BAY 73-7388 is highly efficacious in animal models of intra-abdominal infections caused by a range of aerobic and anaerobic organisms, including VRE

R. Endemann, C.H. Ladel, H. Broetz-Oesterhelt, H. Labischinski

Wuppertal, D

Objective: BAY 73-7388, a novel antibiotic compound from the aminomethylcycline class, has an antibacterial spectrum encompassing Gram-positive, Gram-negative and anaerobic bacteria, including those resistant to currently available antibiotics. The efficacy of BAY 73-7388 in four different mouse infection models with pathogens causing intra-abdominal infections was compared with that of vancomycin (VAN), linezolid (LIN), imipenem (IMI) and metronidazole (MTN).

Methods: For systemic infections (sepsis), enterococci (tetracycline (TET)-resistant Enterococcus faecalis or Enterococcus faecium VRE) were administered intraperitoneally, and i.v. treatment was started 30 min post-infection; survival of the infected mice until day 5 was used as read-out. In the pouch model using Bacteroides fragilis as infecting pathogen, therapeutic efficacy of BAY 73-7388 compared with MTN was determined as reduction of CFU. The mouse model of caecal ligation was used as a model for polymicrobial peritonitis after surgical intervention and 10 days survival used as read-out.

Results: In systemic infections with TET-resistant E. faecalis or E. faecium VRE, efficacy of BAY 73-7388 was superior to VAN or LIN: 100% survival was observed at 1 mg/kg BAY 73-7388, 10 mg/kg VAN and 3 mg/kg LIN. For the E. faecium septicaemia model, 100% survival was found at 15 mg/kg BAY 73-7388, while neither VAN nor LIN treatment resulted in 100% survival, even at 50 mg/kg, the highest dose tested. In the pouch model with B. fragilis, the CFU reduction caused by BAY 73-7388 was superior to MTN (CFU reduction >6 log compared with 4 log at 25 mg/kg, respectively). Therapy (2 × 10 mg/kg i.v. on day 1) of intra-abdominal infections and post-operative polymicrobial peritonitis with BAY 73-7388 showed increased survival compared with IMI or LIN (80 vs. 70 vs. 30%, respectively).

Conclusions: Against pathogens causing intra-abdominal infections (including VRE and TET-resistant strains), BAY 73-7388 demonstrated superior therapeutic efficacy compared with VAN, LIN, MTN or IMI.

(BAY 73-7388 was discovered by Paratek Pharmaceuticals, Inc., Boston, MA, and designated PTK 0796.)
Abstract

Objective

BAY 73-7388, a novel antibiotic compound from the aminomethylcycline class, has an antibacterial spectrum encompassing gram-positive, gram-negative, and anaerobic bacteria, including those resistant to currently available antibiotics. The efficacy of BAY 73-7388 in 4 different mouse infection models with pathogens causing intra-abdominal infections was compared with that of vancomycin (VAN), linezolid (LZD), imipenem (IMI), and metronidazole (MTN).

Methods

For systemic infections (sepsis), enterococcal (tetraycline [TET]-resistant Enterococcus faecalis, VAN-resistant Enterococcus faecium) (VRE) were administered intraperitoneally (IP) treatment was started 30 min postinfection, and survival of the infected mice until day 5 was monitored. In the pouch model using Bacteroides fragilis as the infecting pathogen, therapeutic efficacy of BAY 73-7388 was compared with MTN as determined by reduction of colony forming units (CFU). The mouse model of caecal ligation was used as a model for polymicrobial peritonitis after surgical intervention and 10-day survival was monitored.

Results

In systemic infections with TET-resistant E. faecalis or E. faecium, efficacy of BAY 73-7388 was superior to VAN or LZD (100% survival was observed at 1 mg/kg BAY 73-7388, 20 mg/kg VAN and 100 mg/kg LZD). For the E. faecium septicaemia model, 100% survival was found at 15 mg/kg BAY 73-7388, while neither VAN nor LZD treatment resulted in 100% survival, even at 50 mg/kg. The highest mortality rates were found in the TET-resistant E. faecalis model with 1 mg/kg BAY 73-7388 compared with 20 mg/kg VAN (75%) and 100 mg/kg LZD (50%).

Conclusions

In a mouse model of enterococcal (tet Res, VRE) septicemia, efficacy of BAY 73-7388 was superior to vancomycin or linezolid (80% vs 70% vs 30%, respectively). In a polymicrobial peritonitis mouse model, BAY 73-7388 demonstrates superior efficacy compared with imipenem or linezolid (80% vs 70% vs 30%, respectively).

Results

Among animals infected with E. faecalis strain 27159 (tet-Rev), efficacy of BAY 73-7388 was superior to that of VAN or LZD (Figure 1). 100% survival was observed at 3 mg/kg BAY 73-7388, 10 mg/kg VAN, and 3 mg/kg LZD. Treatment at 1 mg/kg BAY 73-7388, 10 mg/kg VAN, and 3 mg/kg LZD resulted in 100% survival, even at 50 mg/kg, the highest dose tested (Figure 2).

Conclusions

BAY 73-7388 demonstrated superior therapeutic efficacy against pathogens causing intra-abdominal infections (including VRE and TET-resistant strains) compared with VAN, LZ21, or IMI.

Structure of BAY 73-7388

BAY 73-7388 is the first compound selected from the novel class of aminomethylcyclines. BAY 73-7388 exhibits excellent activity against susceptible and resistant gram-positive and gram-negative pathogens as well as significant activity against anaerobic pathogens.

Figure 1. Efficacy in E. faecalis (tet-Rev) mouse bacteremia model.

Figure 2. Efficacy in E. faecium bacteremia model in neutropenic mice.

Figure 3. Efficacy in the B. fragilis granuloma pouch model. Depicted are the reductions of viable bacterial load (CFU) at day 4 post infection (PI) of antibiotic-treated mice as compared with untreated control animals.