PTK 0796 (omadacycline) is a novel macrodilide now in Phase 3 clinical development. In an in vitro assessment of the potential for metabolism and/or drug-drug interactions, was undertaken.

Objectives. The in vitro stability and interaction of PTK with human cytochrome P450 isoforms were determined to assess the potential for in vivo or modified or a combination of both co-factors. Factors of 14C-PTK to liver microsomes was determined by ultrafiltration. The metabolism of 14C-PTK by human hepatocytes (Celsis, Baltimore, MD) was tested at 2.5 µM and 12.5 µM with 2 x 10^6 cells/ml at 37°C for 2-24 hrs. PTK and metabolites were detected by HPLC with radio-detection. CYP450 induction was determined in primary human hepatocytes (1 x 10^6 cells) incubated with 1-100 µM PTK 0796 and substrate probe for 24 and 48 hrs. Inhibition of CYP450 isoforms was determined using pooled human microsomes (BD Biosciences, Bedford, MA) with PTK (1-50 µM) and probe concentrations approximating the Km of each probe. Time-dependent inhibition was determined by preincubating microsomes with 1-10 µM PTK. Probe metabolism was determined by LC-MS.

Results. There was no detectable metabolism of omadacycline by human microsomes, hepatocytes, S9 cytosol, or recombinant flavin monooxygenases (FMO1, FMO3, FMO5). Metabolism of 14C-PTK (50 µM) was determined with either NADPH or UDPGA or a combination of both co-factors. The non-specific binding of [14C]PTK 0796 to liver microsomes was determined by ultracentrifugation. The metabolism of [14C]PTK by human hepatocytes (Celsis, Baltimore, MD) was tested at 2.5 µM and 12.5 µM with 2 x 10^6 cells/ml at 37°C for 2-24 hrs. 14C-[PTK 0796(1-50 µM)] and substrate probes were detected by HPLC with radio-detection. CYP450 induction was determined in primary human hepatocytes (1 x 10^6 cells) incubated with 1-100 µM PTK 0796 and substrate probe for 24 and 48 hrs. Inhibition of CYP450 enzymes was determined using pooled human microsomes (BD Biosciences, Bedford, MA) with PTK (0.1-100 µM) and probe concentrations approximating the Km of each probe. Time-dependent inhibition was determined by preincubating microsomes with 1-100 µM PTK 0796 up to 20 minutes prior to assay. Probe metabolism was determined by LC-MS.

Conclusions. PTK 0796 does not exhibit significant induction of CYP450 activity in human hepatocytes as shown in Table 5. Change of enzyme activity in cultured primary human hepatocytes.

METHODS. Metabolism assays were conducted using either pooled human liver microsomes, S9, liver cytosol, or recombinant flavin monooxygenases (FMO1, FMO3, FMO5). The metabolism of [14C]PTK 0796 (50 µM) was determined with either NADPH or UDPGA or a combination of both co-factors. The non-specific binding of [14C]PTK 0796 to liver microsomes was determined by ultracentrifugation. The metabolism of [14C]PTK 0796 by human hepatocytes (Celsis, Baltimore, MD) was tested at 2.5 µM and 12.5 µM with 2 x 10^6 cells/ml at 37°C for 2-24 hrs. The metabolism of [14C]PTK 0796 by human hepatocytes (1 x 10^5 cells) incubated with 1-100 µM PTK and substrate probe for 24 and 48 hrs. Inhibition of CYP450 isoforms was determined using pooled human microsomes (BD Biosciences, Bedford, MA) with PTK (1-50 µM) and probe concentrations approximating the Km of each probe. Time-dependent inhibition was determined by preincubating microsomes with 1-10 µM PTK. Probe metabolism was determined by LC-MS.

RESULTS.

Table 6. Induction of CYP450 mRNA by real-time PCR, from cultured primary human hepatocytes.

Table 7. Change of enzyme activity in cultured primary human hepatocytes.

Table 8. Inhibition of CYP450 mRNA by real-time PCR, from cultured primary human hepatocytes.

Table 9. Change of enzyme activity in cultured primary human hepatocytes.

RESULTS.

Table 1. Recovery of PTK 0796 after 30 minute incubation with Human Liver Microsomes

Table 2. Stability of PTK 0796 in the presence of Human Hepatocytes

Table 3. Lack of inhibition of cytochrome P450 isozyme activity by PTK 0796

Table 4. Absence of time dependent inhibition by PTK 0796

Table 5. Change of enzyme activity in cultured primary human hepatocytes.

RESULTS.

Table 1. Recovery of PTK 0796 after 30 minute incubation with Human Liver Microsomes

Table 2. Stability of PTK 0796 in the presence of Human Hepatocytes

Table 3. Lack of inhibition of cytochrome P450 isozyme activity by PTK 0796