Introduction

Omadacycline is a potent aminomethylcycline antibiotic with activity against Gram-positive bacteria, including MSSA/MRSA and *S. pneumoniae*, Gram-negative bacteria, and atypical bacteria. It is currently in phase 3 clinical trials for acute bacterial skin and skin structure infections and community-acquired bacterial pneumonia. We have used a well validated, clinically reflective model of the human gut to investigate the effects of omadacycline exposure on the normal gut microbiota, and subsequent potential for induction of simulated *C. difficile* infection (CDI).

Methods

A triple stage chemostat gut model was inoculated with a pooled human faecal slurry (n=5) from healthy volunteers (age ≥60 years) and left for 2 weeks to allow bacterial populations to equilibrate. The model was challenged with 10^10 cfu/mL *C. difficile* spores (ribotype 027) on days 14 and 21. Omadacycline instillation (430 mg/L, once daily, for 7 days) commenced on day 21. The model was observed for a further three weeks post-antimicrobial (days 28-49). Gut microbiota populations and *C. difficile* total viable counts and spore counts were enumerated daily by culture on selective and non-selective agars. Toxin was detected by cell cytotoxicity assay (vero cells), and antimicrobial concentrations were measured by large plate bioassay using *Kocuria rhizophila* ATCC 9341 as the indicator organism.

Figure 1 - Schematic diagram showing the gut model experimental timeline

- **Antibiotic**
- **CD Spores**
- **Inoculation with faecal slurry**

Period A: CD Spores
Period B: CD Spores + Antibiotic
Period C: Inoculation with faecal slurry
Period D: Inoculation with faecal slurry + Antibiotic

Discussion

- Despite causing extensive disruption to the gut microbiota, omadacycline exposure did not induce any signs of simulated CDI within the in vitro human gut model.
- Simulated CDI in the gut model is characterised by a detectable vegetative cell population (an increase in total viable counts vs spore counts) and detectable toxin. Population changes included a rise in the proportion of spores.
- Toxin was detected throughout the experiment in all three vessels.
- There was no evidence of simulated CDI and no changes in gut microbiota, omadacycline exposure did not induce any signs of simulated CDI within the in vitro human gut model.

Figure 2A - Mean facultative anaerobic gut microflora populations (log_{10} cfu/mL) in Vessel 3 of the gut model.

Periods A-D are defined in Figure 1

Figure 2B - Mean obligate anaerobic gut microflora populations (log_{10} cfu/mL) in Vessel 3 of the gut model.

Periods A-D are defined in Figure 1

Figure 3 - Mean *C. difficile* total viable counts and spore counts (log_{10} cfu/mL), toxin titre and Omadacycline concentration in Vessel 3 of the gut model.

Periods A-D are defined in Figure 1

Results

Some fluctuation in gut microbiota were observed in the early days of the experiment until a steady state was achieved (Period A, Fig. 2A and 2B). Prior to antimicrobial exposure (Periods A and B), gut microbiota populations were stable (Fig. 2A and 2B). Minor fluctuations in Bifidobacteria populations were observed at the end of period A (Fig. 2B), but these had recovered prior to antibiotic instillation.

Omadacycline instillation caused immediate substantial changes to the microbiota (Fig. 2A and 2B). Declines were observed in populations of:
- Clostridia (~6 log_{10} cfu/mL)
- Bifidobacteria (~6 log_{10} cfu/mL),
- *B. fragilis* grsp species (~3 log_{10} cfu/mL),
- *Lactobacillus* spp. (~2 log_{10} cfu/mL),
- Enterococcus spp. (~4 log_{10} cfu/mL),
- *Kocuria* spp.

Population changes included a rise in the proportion of spores.

References