A Multi-Site Study Comparing a Commercially Prepared Dried MIC Susceptibility System to the CLSI Broth Microdilution Method for Omadacycline using Non-Fastidious Gram-Positive Organisms

Thermo Fisher Scientific, Cleveland, OH | JMI Laboratories, North Liberty, IA | Marshfield Clinic, Marshfield, WI | University Hospital Münster, Münster, Germany | Thermo Fisher Scientific, Basingstoke, UK | Paratek Pharmaceuticals, King of Prussia, PA

ABSTRACT

Omadacycline (OMC) (Paratek Pharmaceuticals, King of Prussia, PA), is an antibiotic belonging to the oxazolidinone subclass of lactam-bacil that is in phase 3 development for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) and community-acquired bacterial pneumonia (CABP). OMC is active against non-fastidious gram-positive pathogens including Staphylococcus aureus (MSSA and MRSA), and Enterococcus spp. (VSE and VRE). A site evaluation was determined to improve the accuracy and reproducibility of OMC susceptibility testing using the Sensititre® dried MIC susceptibility system (Thermo Fisher Scientific, Cleveland, OH) compared with the CLSI (M07) and ISO 20776-1 reference broth microdilution method (BMD). Both auto and manual read methodologies were employed.

MATERIALS and METHODS

Omadacycline was tested against: (Table 1.)

- Enterococcus spp.
- Staphylococcus spp.
- Staphylococcus saprophyticus
- Staphylococcus aureus
- Coagulase-negative Staphylococcus spp.
- *Streptococcus* spp.
- *Lactococcus* spp.

RESULTS

Continuous Comparisons of OMC MICs for non-fastidious gram-positive Organisms

Clinical and Challenge Isolates Using the Auto Read Method

<table>
<thead>
<tr>
<th>Isolates</th>
<th>603</th>
<th>Reproducibility Isolates (4) (3 x day for 3 days)</th>
<th>15 (540)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Control</td>
<td>CLSI Quality Control Strains (20 replicates of each strain at 4 sites)</td>
<td>2 (106)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1248</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Control

Recommended CLSI quality control (QC) organisms were tested daily and all results were within the acceptable range.

DISCUSSION

This study validates that the Sensititre Susceptibility System (both auto and manual read) demonstrated an equivalent level of performance compared to the CLSI BMD using automated and manual read methods that were 99.8% and 99.4%, respectively.

CONCLUSIONS

This study validates that the Sensititre 18–24 hour susceptibility system (both auto read and manual read) demonstrated an equivalent level of performance compared to the CLSI BMD for automated and manual reads.

REFERENCES

- **Omadacycline**
 - Auto Read Manual
 - Between-site isolates tested 440 440
 - Between-site isolates within ±1 log dilution 430 437
 - Between-site reproducibility 430 437
 - Between-site reproducibility % 99.8% 99.4%
 - Total essential agreement 636/640 637/640
 - Essential agreement % 99.8% 99.4%

CONCLUSIONS

This study validates that the Sensititre 18–24 hour susceptibility system (both auto read and manual read) demonstrated an equivalent level of performance compared to the CLSI BMD for automated and manual reads. The overall essential agreement for Omadacycline within ±1 log, dilution was 97.3% for the auto read method and 97.7% for the manual read method.

RESULTS Cont.

The overall essential agreement for Omadacycline within ±1 log, dilution was 97.7% for the auto read method.

Table 5. Summary Data and % Essential Agreement of Non-Fastidious Gram-Positive Organisms

Clinical Isolates Only

Table 4. Summary Data and % Essential Agreement of Non-Fastidious Gram-Positive Clinical and Challenge Isolates Using the Auto Read Method

RESULTS Cont.

Figure 1. Chemical Structure of Omadacycline

RESULTS

Essential agreement for Omadacycline on the Sensititre susceptibility plate compared to the reference microdilution plate was calculated for each read method (Auto and Manual) using the ±1 log, dilution standard. Essential agreement rates are shown for non-fastidious gram-positive isolates in Tables 3 and 4.

Table 1. Organisms Tested

Table 3. Summary Data and % Essential Agreement of Non-Fastidious Gram-Positive Organisms

Table 6. Summary Data and % Essential Agreement of Non-Fastidious Gram-Positive Clinical and Challenge Isolates Using the Auto Read Method

RESULTS

Essential agreement for Omadacycline on the Sensititre susceptibility plate compared to the reference microdilution plate was calculated for each read method (Auto and Manual) using the ±1 log, dilution standard. Essential agreement rates are shown for non-fastidious gram-positive isolates in Tables 3 and 4.

Table 2. Quality Control Strains

- **Staphylococcus aureus ATCC 29213**
 - 0.12-1
- **Enterococcus faecalis ATCC 29212**
 - 0.06-0.5

RESULTS

Clinical and Challenge Organisms

Table 4. Summary Data and % Essential Agreement of Non-Fastidious Gram-Positive Clinical and Challenge Isolates Using the Auto Read Method

RESULTS

The overall essential agreement for Omadacycline within ±1 log, dilution was 97.7% for the auto read method.