Efficacy of Omadacycline and Linezolid Against Characterized Drug Resistant S. aureus from Combined Phase 3 ABSSSI Studies

Eliana S. Armstrong, PhD, Surya Chitra, PhD, Alissa Sirbu, BSN, Lynne Garrity-Ryan, PhD, Amy Manley, BS, Evan Tzanis, BA, Paul C. McGovern, MD, Judith N. Steenbergen, PhD

Paratek Pharmaceuticals, Inc., King of Prussia, PA

BACKGROUND

- Omadacycline (OMC), a novel aminomethylcycline antibiotic, is in clinical development as once-daily oral and intravenous (iv) monotherapy for community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections (ABSSSI)^{1,2}
- Alterations in the chemical structure of OMC overcome two tetracycline resistance mechanisms: efflux pumps and ribosomal protection³ (**Fig. 1**)

Figure 1. Chemical Structure of Omadacycline

- OMC has potent *in vitro* activity against the common Gram-positive ABSSSI pathogens, including methicillin-resistant *Staphylococcus aureus* (MRSA), many Gram-negative aerobes, anaerobes, and a number of atypical bacterial pathogens^{4,5}
- OMC demonstrated non-inferiority to linezolid (LZD) for treatment of ABSSSI in the Omadacycline in Acute Skin and Skin Structure Infections Study (OASIS)-1 iv-to-oral and OASIS-2 oral-only Phase 3 studies^{6,7}
- This analysis combines data from both Phase 3 studies to investigate clinical outcomes of OMC or LZD when MRSA or multidrug-resistant (MDR) S. aureus (SA) was the baseline pathogen

METHODS

Population Pooling

- OASIS-1 and OASIS-2 Phase 3 studies had similar designs (Fig. 2) and recruitment criteria
- Eligible subjects were ≥18 years of age who had qualifying ABSSSI with lesions ≥75cm² and with evidence of a systemic response to infection within 24 hours before randomization
- Overall, 1380/1390 randomized subjects received at least 1 dose of study drug (Safety Population)

Figure 2. Study Design of Phase 3 Clinical Studies

METHODS

Analysis Populations

- mITT: modified intent-to-treat (ITT), all randomized subjects without a sole Gram-negative causative pathogen at baseline (overall, 1347 subjects)
- micro-mITT: microbiological mITT, all mITT subjects with ≥1 Gram-positive causative pathogen at baseline (overall, 1018 subjects)

OASIS-1 and **OASIS-2** Study Primary Endpoints

- United States Food and Drug Administration (FDA) primary endpoint: early clinical response (ECR) of ≥20% reduction in primary lesion size at 48–72 hours after the first dose in the mITT population
- European Medicines Agency (EMA) primary endpoint: investigator's assessment of clinical response (IACR) at post therapy evaluation (PTE)
 7–14 days after the last dose in the mITT and clinically evaluable populations

Microbiological Assessment

- Isolates were obtained from subjects at the screening visit (prior to initiation of antibiotic therapy)
- Baseline ABSSSI infection site specimens and blood samples were submitted to the local microbiology laboratory for Gram stain and culture
- Pathogens were identified to genus and species level (verified by the central laboratory)

Resistance Phenotyping

- Minimum inhibitory concentration (MIC) testing was conducted by the central laboratory
- MIC was by broth microdilution (CLSI M100-S25) using custom frozen panels (Thermo Fisher Scientific, Cleveland, OH)
- Quality control (QC) and interpretation of results (susceptible, intermediate, or resistant) were performed in accordance with CLSI M100-S25
- S. aureus ATCC 29213 was the QC organism (all results were within the recommended ranges)

PCR Genotyping

 The mecA gene (encoding penicillin-binding protein PBP2a) and the pvl gene (encoding Panton-Valentine leukocidin, PVL) were detected using multiplex real-time PCR

– Isolates of SA were selected for PCR testing based on initial oxacillin MIC $>2~\mu g/mL$ SA isolates

RESULTS

ABSSSI Characteristics

 Infection types were balanced across the treatment arms and wound infection was the most frequent (Table 1)

Table 1. ABSSSI Infection Types at Baseline in the OASIS Phase 3 Studies (mITT population)

(mITT population)			
ABSSSI Characteristic	Omadacycline (N=676)	Linezolid (N=671)	Overall (N=1347)
Infection type, n (%)			
Wound infection	312 (46.2)	318 (47.4)	630 (46.8)
Major abscess	155 (22.9)	151 (22.5)	306 (22.7)
Cellulitis/erysipelas	209 (30.9)	202 (30.1)	411 (30.5)

RESULTS

SA Isolates

- Three-quarters (74.7%) of subjects had SA isolates at baseline (**Table 2**)
- Antibiotic resistance was common, occurring in 61.3% of SA isolates (Fig. 3)
- Over one-third were MDR (≥3 antibiotic classes)

Table 2. Distribution of Resistance Phenotypes of *Staphylococcus aureus* (SA) Isolates (micro-mITT)

ABSSSI Characteristic	(N=504) n (% of N)	(N=514) n (% of N)	(N=1018) n (% of N)
Staphylococcus aureus	376 (74.6)	384 (74.7)	760 (74.7)
Resistant to ≥1 antibiotic class	244 (48.4)	222 (43.2)	466 (45.8)
Resistant to ≥2 antibiotic class	203 (40.3)	187 (36.4)	390 (38.3)
Resistant to ≥3 antibiotic class	137 (27.2)	130 (25.3)	267 (26.2)

Figure 3. Level of Resistance of *Staphylococcus aureus* (SA) Isolates (micro-mITT)

MDR SA

Clinical success rates at PTE when MDR SA was present with OMC or LZD were comparable to that for overall SA isolates (>80% for all SA resistance phenotypes; Fig. 4)

- Clinical failure rates were low (OMC 2.9% vs LZD 6.2%; **Table 3**)

Figure 4. IACR at PTE (Clinical Success) by Staphylococcus aureus (SA) Resistance Phenotype (micro-mITT)

RESULTS

Table 3. IACR at PTE (Clinical Failure/Indeterminate) by Staphylococcus aureus (SA) Resistance Phenotype (micro-mITT)

	Omadacycline (N=504)		Linezolia (N=514)	
	Clinical Failure			
Baseline Pathogen	n/N1 (%)	n/N1 (%)	n/N1 (%)	n/N1 (%)
Staphylococcus aureus	16/376 (4.3)	48/376 (12.8)	26/384 (6.8)	46/384 (12.0)
Resistant to ≥1 antibiotic class	4/244 (1.6)	34/244 (13.9)	12/222 (5.4)	26/222 (11.7)
Resistant to ≥2 antibiotic class	4/203 (2.0)	29/203 (14.3)	11/187 (5.9)	20/187 (10.7)
Resistant to ≥3 antibiotic class	4/137 (2.9)	22/137 (16.1)	8/130 (6.2)	15/130 (11.5)

MRSA

- MRSA was identified in 330/1018 subjects (32.4%)
- Clinical success rates at PTE for subjects with MRSA were high (>80%) in both treatment arms (Fig. 5)
- These rates were comparable to those for subjects with methicillinsensitive *S. aureus* (MSSA) and overall SA isolates
- Similarly high rates were seen with MRSA and MSSA across infection types (Table 4)

Figure 5. IACR at PTE (Clinical Success) by Methicillin Resistance Status (micro-mITT)

Table 4. IACR at PTE by Baseline Pathogen and Infection Type (micro-mITT)

	Omadacycline (N=504)	Linezolid (N=514)
Infection Type Baseline Pathogen	Clinical Success n/N1 (%)	Clinical Success n/N1 (%)
Wound infection		
Staphylococcus aureus	162/199 (81.4)	166/212 (78.3)
MRSA	70/83 (84.3)	69/86 (80.2)
MSSA	94/118 (79.7)	97/127 (76.4)
Major abscess		
Staphylococcus aureus	89/107 (83.2)	83/101 (82.2)
MRSA	47/59 (79.7)	39/48 (81.3)
MSSA	43/49 (87.8)	47/57 (82.5)
Cellulitis/erysipelas		
Staphylococcus aureus	61/70 (87.1)	63/71 (88.7)
MRSA	29/31 (93.5)	20/23 (87.0)
MSSA	34/41 (82.9)	43/48 (89.6)
MRSA methicillin-resistant S aureus: MSSA methicillin-s	sensitive S. aureus	

MRSA, methicillin-resistant S. aureus; MSSA, methicillin-sensitive S. aurei

PCR Genotyping

- 96.1% of MRSA isolates were tested for *mecA* and *pvl*
- All MRSA isolates tested were mecA positive in OASIS-1 (117/117), and in OASIS-2 all but one isolate (199/200) from an LZD-treated subject were mecA positive

RESULTS

- The virulence factor Panton-Valentine leukocidin (PVL) was widespread (present in 89.3% of characterized MRSA isolates)
- Clinical success rates at PTE for treatment of subjects with PVL + MRSA were high (>80%) in both treatment arms (Table 5)

Table 5. IACR at PTE by Staphylococcus aureus (SA) Resistance Phenotype (micro-mITT)

	Omadacycline (N=504)	Linezolid (N=514)	
Baseline Pathogen	Clinical Success n/N1 (%)	Clinical Success n/N1 (%)	Response Difference Betwee Treatments (95% C
MRSA/PVL-	19/20 (95.0)	14/14 (100.0)	-5 (-14.6, 4.6)
MRSA/PVL+	125/148 (84.5)	112/135 (83.0)	1.5 (-7.1, 10.1)
Response Difference (95% CI) Between PVL Status	10.5 (-0.7, 21.7)	17.0 (10.7, 23.4) *	

* Significant; CI, confidence interval; MRSA, methicillin-resistant S. aureus; PVL, Panton-Valentine leukocidin

CONCLUSIONS

Omadacycline treatment outcomes were successful in the majority of ABSSSI subjects with *S. aureus* isolates

 Notably, subjects with MDR or PVL+ isolates had successful treatment outcomes with omadacycline

REFERENCES

- 1. Villano S, et al. *Future Microbiol*. 2016;11(11):1421-1434.
- 2. Honeyman L, et al. *Antimicrob Agents Chemother*. 2015;59(11):7044-7053.
- 3. Draper MP, et al. Antimicrob Agents Chemother. 2014;58(3):1279-1283.
- 4. Tanaka SK, et al. *Bioorg Med Chem*. 2016;24(24):6409-6419.
- 5. Macone AB, et al. *Antimicrob Agents Chemother*. 2014;58(2):1127-1135.
- 7. O'Riordan W, et al. ECCMID 2018 abstract 425.

6. O'Riordan W, et al. ECCMID 2017 abstract 630.

FUNDING AND DISCLOSURES

The OASIS studies were sponsored by Paratek Pharmaceuticals, Inc. Medical editorial assistance, funded by Paratek Pharmaceuticals, Inc., was provided by Innovative Strategic Communications

ACKNOWLEDGEMENTS

The authors wish to thank the subjects and investigators involved in these studies